Solving the Schrödinger-Poisson system using the coordinate adaptive moving mesh method

نویسندگان

چکیده

In this paper, we implement the Adaptive Moving Mesh method (AMM) to solution of initial value problems involving Schr\"odinger equation, and more specifically Schr\"odinger-Poisson system equations. This is based on problem a discrete domain, whose resolution coordinate time-dependent, allows dynamically assign numerical in terms desired refinement criteria. We apply solve various test stationary solutions SP system, toy scenarios related disruption subhalo s made ultralight bosonic dark matter traveling top host galaxies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

The Schrödinger-Poisson System on the Sphere

Abstract. We study the Schrödinger–Poisson system on the unit sphere S2 of R3, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every Hs(S2) with s > 0, and not uniformly well-posed on L2(S2). The proof of well-posedness relies on ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Solving Poisson’s Equation using Adaptive Mesh Refinement

This report discusses an implementation [1] of an Adaptive Mesh Refinement (AMR) Poisson solver which solves Poisson’s equation using multigrid relaxation. Local refinement introduces several added issues. Special care has been taken to match the solution across coarse/fine interfaces so that the solution maintains global second order accuracy. The nested mesh hierarchy can be defined by the us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.105.083521